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Mission of the Institute

The mission of the Institute is to discover the key principles

by which brains work and to implement these in artificial

systems that interact intelligently with the real world. 2
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The G-Lab

Mission of the Institute

The mission of the Institute is to discover the key principles

by which brains work and to implement these in artificial

systems that interact intelligently with the real world.
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Research Background

Computational Neuroscience

AI / Computational Neuroscience

The G-Lab
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G-Lab: Creating Synergies to Advance Neuroscience and AI

Artificial Intelligence

Deep Networks, Transformers

High energy consumption, hundreds of GPUs 

Requires huge amounts training data

NeuroscienceAI

Inspire

Technologies

Inspire

Hypotheses
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Natural Intelligence

Biological Neuronal Networks

Highly energy efficient (20W),

Learns extremely efficient
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Content of Today’s Talk:

Part I: Learning in Hierarchical (Deep) Cortical Networks

NeuroscienceAI

Scientific Question:

How does Credit Assignment 

in the Brain work?

6
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Part II: Understanding Hierarchical Neuronal Representations in Brain 

NeuroscienceAI

Content of Today’s Talk:

Part I: Learning in Hierarchical (Deep) Cortical Networks

NeuroscienceAI

7

Scientific Question:

What are the neuronal representations of the 

sensory input (e.g. image of bus) that allows our brain 

to generate goal directed actions?

Scientific Question:

How does Credit Assignment 

in the Brain work?
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Content of Today’s Talk:

Part I: Learning in Hierarchical (Deep) Cortical Networks

NeuroscienceAI

8

Scientific Question:

How does Credit Assignment 

in the Brain work?
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Content of Today’s Talk:

Part I: Learning in Hierarchical (Deep) Cortical Networks

NeuroscienceAI

9

Scientific Question:

How does Credit Assignment 

in the Brain work?

Our Approach: Make Deep Network Learning more Biologically Plausible.

Why?
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Content of Today’s Talk:

Part I: Learning in Hierarchical (Deep) Cortical Networks

NeuroscienceAI

10

Scientific Question:

How does Credit Assignment 

in the Brain work?

Engineering:

• To develop Deep Networks that are more energy efficient.

• To train Deep Networks with less training data.

• To enable Deep Continual Learning.

• To train Deep Networks with dynamic data.

Neuroscience:

• We currently cannot use deep learning algorithms to explain 

how credit assignment in the brain works.
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Image credit Jonas Kubilinas

LGN: Lateral Geniculate Nucleus

V1: Primary Visual Cortex

V2. Secondary Visual Cortes

V3: Third Visual Cortex

LOC: Lateral Occipital Cortex

Background and Motivation - Part I

The Brain’s Visual Pathway

11

Visual Cortex
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Image credit Jonas Kubilinas

LGN: Lateral Geniculate Nucleus

V1: Primary Visual Cortex

V2. Secondary Visual Cortes

V3: Third Visual Cortex

LOC: Lateral Occipital Cortex

Background and Motivation - Part I

The Brain’s Visual Pathway

Quiroga et al., 2005
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Visual Cortex
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Bus

Input
Layer

Output
Layer

Background and Motivation - Part I

Brain Visual Pathway

Deep Neuronal Network

Quiroga et al., 2005

13
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Bus

Background and Motivation - Part I

Deep Neuronal Network

Mid-level
Features

Lower-level
Features

Input
Layer

Output
Layer

Jammins et al., 2016

14
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Stimulus (Bus)

Input

Layer

Hidden Layers

Output

Layer

Desired

Output
Error

Background and Motivation - Part I

The Error Backpropagation Method

1. The Forward Pass 

15

Deep Neuronal Network
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1. The Forward Pass 

2. The Backward (Error) Pass

Error Signal

Input

Layer
Output

Layer
Error

Top Down

Error

Input

Layer
Output

Layer

Hidden Layers

Background and Motivation - Part I

The Error Backpropagation Method

16

Deep Neuronal Network
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1. The Forward Pass 

2. The Backward (Error) Pass

Error Signal

Input

Layer
Output

Layer
Error

Top Down

Error

Input

Layer
Output

Layer

Hidden Layers

Background and Motivation - Part I

The Error Backpropagation Method
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Deep Neuronal Network

Bottom-Up

(Sensory) 

Top-Down

(Error) 
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• Requires separate forward and backward phases.

• Sends sensory information forward, but error backward.

• Sends errors backward though the SAME weights.

• Is based on discrete stepwise computations.

• Neuron update/plasticity not biologically observed.

Background and Motivation - Part I

The Error Backpropagation Method

Why does Backpropagation not explain 

how credit assignment in biology works?

18
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Error Signal

Input

Layer
Output

Layer

Input

Layer
Output

Layer

Hidden Layers

How does this compare

to a biological neuron

in the neocortex?

Background and Motivation - Part I

Seeking Inspiration from Biology

19
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Mouse Brain Slice

Apical

Dendrite

Roman y Cajal, 1906 

Background and Motivation - Part I

Seeking Inspiration from Biology

20

Grewe et al. 2010

Basal

Dendrites

Neocortex

Neocortex

Pyramidal 

Neuron
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Mouse Brain Slice

Apical

Dendrite

Basal

Dendrites

Roman y Cajal, 1906 

Background and Motivation - Part I

Seeking Inspiration from Biology

21

Grewe et al. 2010

Synapses

Neocortex

Neocortex

Pyramidal 

Neuron
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Mouse Brain Slice

Sensory

Input

Top-Down

Feedback

(Error)
Apical

Dendrite

Background and Motivation - Part I

Seeking Inspiration from Biology

22

Roman y Cajal, 1906 
Grewe et al. 2010

Basal

Dendrites

Neocortex

Neocortex
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Deep Learning Through Feedback Control

Sensory

Input

Top-Down

Feedback

23

Meulemans et al. 2020, 2021
vi membrane potential 

ri neuron firing rate

Matilde T. Farinha Alexander Meulemans
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Sensory

Input

Top-Down

Feedback

Deep Learning Through Feedback Control

Non.

Linearity

Meulemans et al. 2020, 2021

24

vi membrane potential 

ri neuron firing rate

Neuron Output / 

Firing Rate
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Neuron Output / 

Firing Rate

Sensory
Feedback

Deep Learning Through Feedback Control

Non.

Linearity

Meulemans et al. 2020, 2021

25

vi membrane potential 

ri neuron firing rate

Membrane Potential

Dynamics

Sensory

Input vi-1(t)

Top-Down

Feedback u(t)

u(t) Feedback signal

Qi Feedback weights



Sensitivity: C2 Internal

Sensory

Input vi-1(t)

Top-Down

Feedback u(t)

How can we train this single neuron to detect 

a specific sensory input pattern?

Sensory
Feedback

Deep Learning Through Feedback Control

Non.

Linearity

Meulemans et al. 2020, 2021

26

vi membrane potential 

ri neuron firing rate

Membrane Potential

Dynamics

Neuron Output / 

Firing Rate

u(t) Feedback signal

Qi Feedback weights
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ri* (desired output)

Sensory
Feedback

Membrane Potential

Dynamics

Deep Learning Through Feedback Control

Non.

Linearity

Meulemans et al. 2020, 2021
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vi membrane potential 

ri neuron firing rate

Neuron Output / 

Firing Rate

Sensory

Input vi-1(t)

Controller

u(t)

u(t) Feedback signal

Qi Feedback weights



Sensitivity: C2 Internal

ri* (desired output)

Feedback start

Sensory start

Positive 

Feedback

Negative 

Feedback

Sensory
Feedback

Deep Learning Through Feedback Control

Non.

Linearity

Meulemans et al. 2020, 2021
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Membrane Potential

Dynamics

Neuron Output / 

Firing Rate

Sensory

Input vi-1(t)

Controller

u(t)
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ri* (desired output)

Feedback start

Sensory start

Controller

Positive 

Feedback

Negative 

Feedback

Sensory
Feedback

Deep Learning Through Feedback Control

Non.

Linearity

Meulemans et al. 2020, 2021
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Membrane Potential

Dynamics

Neuron Output / 

Firing Rate

Sensory

Input vi-1(t)

u(t)
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ri* (desired output)

Synaptic

Weight Update

Activity w/o

Feedback

Activity with

Feedback

Presynaptic

Term

Sensory
Feedback

Deep Learning Through Feedback Control

Non.

Linearity

Meulemans et al. 2020, 2021

30

Membrane Potential

Dynamics

Neuron Output / 

Firing Rate

Controller

u(t)

Sensory

Input vi-1(t)
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ri* (desired output)

Synaptic

Weight Update

Activity w/o

Feedback

Activity with

Feedback

Presynaptic

Term

Controller

Sensory
Feedback

Deep Learning Through Feedback Control

Non.

Linearity

Meulemans et al. 2020, 2021

31

Membrane Potential

Dynamics

Neuron Output / 

Firing Rate Neuron

Activity

Neuron

Plasticity

u(t)

Sensory

Input vi-1(t)
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Output

Input (Sensory)

ri* (desired activity)

Controller

Deep Learning Through Feedback Control

Meulemans et al. 2020, 2021

32
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We solve a complex

control problem!

ri* (desired activity)

Controller

Deep Learning Through Feedback Control

Input (Sensory)

Meulemans et al. 2020, 2021

33
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Minimising Control for Credit Assignment

Input (Sensory)

Top-Down

Feedback

Sensory

Input

(Control Signal)

(Loss/Error)

Learning = 

Reducing Help!

Early 

Stage

Late 

Stage

Meulemans et al. 2022

34
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Checkpoint: How Bio-Plausible are we?

1. We no longer use separate forward and backward phases.

2. We don’t send sensory information forward and errors backward.

3. We don’t send feedback signals though the SAME weights.

4. We allow continuous (in time) computation.

5. Our update/plasticity rule still not biologically plausible.

Meulemans et al. 2020, 2021, 2022
* *

Spotlight Awards

(Best 1-2%)

Minimising Control for Credit Assignment

35
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Presynaptic

Neuron

Postsynaptic

Neuron

Biological 

Data

S
y
n
a
p
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c
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e
ig
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d
a

te

Bi and Poo, 1998

Neuronal Plasticity in Biology

Spike Timing

Spike Timing 

Dependent Plasticity

(STDP)

Spikes

36
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Presynaptic

Neuron

Postsynaptic

Neuron

Biological 
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Bi and Poo, 1998

Neuronal Plasticity in Biology

Spike Timing

Spike Timing 

Dependent Plasticity

(STDP)

Spikes

37
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Aceituno et al. 2023

Biology:

Spike Timing 

Dependent Plasticity

(STDP)

Mimicking Biological Plasticity

38

Pau Aceituno
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Aceituno et al. 2023

Biology:

Spike Timing 

Dependent Plasticity

(STDP)

Learning Through Control

Differential Hebbian + 

Feedback Control

Feedback start

Sensory start

Mimicking Biological Plasticity

39
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Feedback start

Sensory start

Aceituno et al. 2023

Biology:

Spike Timing 

Dependent Plasticity

(STDP)

Learning Through Control

Differential Hebbian + 

Feedback Control

Weight UpdatePositive 

Feedback

Negative 

Feedback

Mimicking Biological Plasticity

Aceituno et al, 2023, Front. Comp. Neurosc

40
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Feedback start

Sensory start

Aceituno et al. 2023

Biology:

Spike Timing 

Dependent Plasticity

(STDP) W

Learning Through Control

Differential Hebbian + 

Feedback Control

W

Weight UpdatePositive 

Feedback

Negative 

Feedback

Mimicking Biological Plasticity

Aceituno et al, 2023, Front. Comp. Neurosc

r is positive
.

41
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Feedback start

Sensory start

Aceituno et al. 2023

Biology:

Spike Timing 

Dependent Plasticity

(STDP) W

Learning Through Control

Differential Hebbian + 

Feedback Control

W

=

Weight UpdatePositive 

Feedback

Negative 

Feedback

Mimicking Biological Plasticity

Aceituno et al, 2023, Front. Comp. Neurosc

r is negative
.

r is positive

42
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Temporal Hebbian Updates

Allow to Learn Cortical Hierarchies 

MNIST Dataset

(standard benchmark for 

handwritten digit recognition)

Aceituno et al, 2023, Front. Comp. Neurosc

43
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Differential Hebbian Updates (10-2)

Temporal Hebbian Updates

Allow to Learn Cortical Hierarchies 

MNIST Dataset

(standard benchmark for 

handwritten digit recognition)

Aceituno et al, 2023, Front. Comp. Neurosc
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Bio-Plausible Updates  (a.u)
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Differential Hebbian Updates (10-2)

Temporal Hebbian Updates

Allow to Learn Cortical Hierarchies 

MNIST Dataset

(standard benchmark for 

handwritten digit recognition)

BP      1.74 ± 0.10%

DFC    1.98 ± 0.05%

Bio-DFC 1.89 ± 0.15%

Classification Error

Aceituno et al, 2023, Front. Comp. Neurosc
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Differential Hebbian Updates (10-2)

Temporal Hebbian Updates

Allow to Learn Cortical Hierarchies 

MNIST Dataset

(standard benchmark for 

handwritten digit recognition)

BP      1.74 ± 0.10%

DFC    1.98 ± 0.05%

Bio-DFC 1.89 ± 0.15%
Classification Error Aceituno et al, 2023, Front. Comp. Neurosc
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Bio-Plausible Updates  (a.u)

Classification Error
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Advantages:

• Continuous / asynchronous updates and data processing.

• Absence of phases or back-propagation errors (+ uses less memory).

• Naturally works with time series data.

• Very simple learning rule that is local in space and time.

Backpropagation

of the Error

Learning Through Controlling

a Complex Dynamic System

Hierarchical (Deep) Learning though Control

47

Aceituno et al, 2023, Front. Comp. Neurosc

Learning = 

Reducing Control 

Feedback!
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Advantages of Biologically Plausible Deep Learning:

• Continuous / asynchronous updates and data processing.

• Naturally works with time series data.

• Absence of phases or back-propagation errors (+uses less memory).

• Very simple learning rule that is local in space and time.

• Enables Continual Learning when neuronal activity is sparse.

Hierarchical (Deep) Network Learning though Control

48
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Advantages of Biologically Plausible Deep Learning:

• Continuous / asynchronous updates and data processing.

• Naturally works with time series data.

• Absence of phases or back-propagation errors (+uses less memory).

• Very simple learning rule that is local in space and time.

• Can do Continual Learning when neuronal activity is sparse.

• Is ideally suited for low-power deep learning on neuromorphic processors.

Indiveri 

Group

@ INI

Neuromorphic 

Devices

- Ultra low-power

- Scalable to 3D

Matteo Saponati

(Grewe lab)

49

(Deep) Learning though Control in Hardware

Learning by 

Controlling a complex 

Dynamic System

Building a 

Neuromorphic

Device for low-power 

Deep Learning
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Advantages of Biologically Plausible Deep Learning:

• Continuous / asynchronous updates and data processing.

• Naturally works with time series data.

• Absence of phases or back-propagation errors (+uses less memory).

• Very simple learning rule that is local in space and time.

• Can do Continual Learning when neuronal activity is sparse.

• Is ideally suited for low-power deep learning on neuromorphic processors.

Indiveri 

Group

@ INI

Neuromorphic 

Devices

- Ultra low-power

- Scalable to 3D

Cartiglia et al, 2022, IEEE

Pyramidal Neuron 

In Silico

(Deep) Learning though Control in Hardware

Matteo Saponati

(Grewe lab)

50

Learning by 

Controlling a complex 

Dynamic System

Building a 

Neuromorphic

Device for low-power 

Deep Learning
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Advantages of Biologically Plausible Deep Learning:

• Continuous / asynchronous updates and data processing.

• Naturally works with time series data.

• Absence of phases or back-propagation errors (+uses less memory).

• Very simple learning rule that is local in space and time.

• Can do Continual Learning when neuronal activity is sparse.

• Is ideally suited for low-power neuromorphic processors.

Indiveri 

Group

@ INI

Neuromorphic 

Devices

- Ultra low-power

- Scalable to 3D

Cartiglia et al, 2022, IEEE

Matteo Cartiglia

Building a 

Neuromorphic

Device for 

Deep Learning

51

(Deep) Learning though Control in Hardware
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Weight Update

Plasticity is only ‘ON’ when Feedback is active!

NeuroscienceAI

52
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In Vitro Measurement of 

Neuronal Activity & Plasticity

We are testing this theoretical 

prediction in biological neurons!

Weight Update

Plasticity is only ‘ON’ when Feedback is active!

NeuroscienceAI

53
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Electrical 

Stimulation

Pipette

Layer 1

Layer 2/3

Layer 6

Layer 4

Sensory

Input

Top-Down

Feedback

(Error)
Apical

Dendrite

Basal

Dendrites

NeuroscienceAI
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Feedback active

Neuronal Activity

Neuronal Plasticity

Video Credit: R. Loidl

NeuroscienceAI

Electrical 

Stimulation

Pipette

C
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e
v
e
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Summary Part 1:

56
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???

Summary Part 1:

57
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Summary Part 1:

58

???

Part II: Understanding Hierarchical Neuronal Representations in Brain 

NeuroscienceAI

Scientific Question:

What are the neuronal representations of the 

sensory input (e.g. image of bus) that allows our brain 

to generate goal directed actions?
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Brain Visual Pathway

Deep Neuronal Network

Bus

Background and Motivation - Part II

Input
Layer

Output
Layer

59
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Brain Visual Pathway

Deep Neuronal Network

Background and Motivation - Part II

Bus

Input
Layer

Output
Layer

60
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Brain Visual Pathway

Deep Neuronal Network

Predicts Labels / Tokens

generated by Humans

Generates Intelligent 

Behavior

Background and Motivation - Part II

Bus

Input
Layer

Output
Layer

61
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Brain Visual Pathway

Background and Motivation - Part II

???

62

Scientific Question:

What are the neuronal representations of the sensory 

input (e.g. image of bus) that allows our brain to 

generate goal directed actions?
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Brain Visual Pathway

Background and Motivation - Part II

???

Prof. Dr. Jean Piaget
Swiss psychologist 

Neuchatel, 1896-1980

Affordance alludes to the qualities of an object or situation that

define its possible use or make clear how it can or should be used.

Affordance adheres to the idea that perception and action are

inseparable (Principles of Genetic Epistemology, Jean Piaget).

The Concept of Affordance in Psychology.

63
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Investigating Abstract Stimulus Representations in mPFC

64
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Stimulus Behavior

Medial Prefrontal 

Cortex (mPFC)

Investigating Abstract Stimulus Representations in mPFC

65
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Investigating Abstract Stimulus Representations in mPFC
Sensory Processing

Stimulus

Medial Prefrontal 

Cortex (mPFC)

66
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Behavior

Investigating Abstract Stimulus Representations in mPFC
Action Generation

Stimulus

Sensory Processing

Medial Prefrontal 

Cortex (mPFC)

67
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Investigating Abstract Stimulus Representations in mPFC
Action Generation

Stimulus

Burgos-Robles et al. 2009
Le Merre et al. 2018
Otis et al. 2017

‘Learning induces 
representations of 

behaviorally relevant 
stimuli’

Sensory Processing

Behavior

Medial Prefrontal 

Cortex (mPFC)

68
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Investigating Abstract Stimulus Representations in mPFC
Action Generation

Stimulus

Burgos-Robles et al. 2009
Le Merre et al. 2018
Otis et al. 2017

‘Learning induces 
representations of 

behaviorally relevant 
stimuli’

‘mPFC activity guides/
alters behavior’

Murugan et al. 2017
Otis et al. 2017
Rozeske et al. 2018
Diehl et al. 2020

Behavior

Sensory Processing

Medial Prefrontal 

Cortex (mPFC)

69
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Investigating Abstract Stimulus Representations in mPFC

70

Measuring Neuronal Activity in the Mouse Brain
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Cunningham and Yu, 2014

Data

Interesting latent/task variables for us:

- Shuttle motion

- Auditory tone stimulus

- Direction of shuttle motion

Task Variables

n=12 mice, 

3395 neurons

Investigating Abstract Stimulus Representations in mPFC

Processing Method

71

The bus neuron is actually 

100 or 1000 neuron’s. The bus is encoded

as a pattern of activity.
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Cunningham and Yu, 2014

Data

Interesting latent/task variables for us:

- Shuttle motion

- Auditory tone stimulus

- Direction of shuttle motion

Task Variables

n=12 mice, 

3395 neurons

Investigating Abstract Stimulus Representations in mPFC

72

The bus neuron is actually 

100 or 1000 neuron’s. The bus is encoded

as a pattern of activity.
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Cunningham and Yu, 2014

Data

Interesting latent/task variables for us:

- Shuttle motion

- Auditory tone stimulus

- Direction of shuttle motion

Task Variables

n=12 mice, 

3395 neurons

Investigating Abstract Stimulus Representations in mPFC

The bus neuron is actually 

100 or 1000 neuron’s. The bus is encoded

as a pattern of activity.

Data Analysis Method

73
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n=12 mice, 

3395 neurons

Ehret et al. final revisions @ Nature Neurosc.

Joint 

Subspace
ResidualResidual

Stimulus Representations in mPFC

74
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n=12 mice, 

3395 neurons

Joint 

Subspace

Identify &

Remove

Identify &

Remove

ResidualResidual

Residual

Total VE explained 

>90%

New

Stimulus Representations in mPFC

Ehret et al. final revisions @ Nature Neurosc.
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n=12 mice, 

3395 neurons

Joint 

Subspace

Identify &

Remove

Identify &

Remove

ResidualResidual

Residual

Total VE explained 

>90%

New

+

Stimulus Representations in mPFC

Ehret et al. final revisions @ Nature Neurosc.
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n=12 mice, 

3395 neurons

Joint 

Subspace

Identify &

Remove

Identify &

Remove

Identify &

Remove

ResidualResidual

Residual

+ +

Stimulus Representations in mPFC

Ehret et al. final revisions @ Nature Neurosc.
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n=12 mice, 

3395 neurons

Joint 

Subspace

Identify &

Remove

Identify &

Remove

Identify &

Remove

ResidualResidual

Residual

Total VE explained 

>90%

+ +

Ehret et al. final revisions @ Nature Neurosc.
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Stimulus Representations in mPFC

Encode Task(sensory)-Specific Motor Plans 
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Shuttle

During

Task

Random 

Shuttle

Before Learning

1
 (

a
.u

.)

Ehret et al. final revisions @ Nature Neurosc.

79

Stimulus Representations in mPFC

Encode Task(sensory)-Specific Motor Plans 
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Shuttle

During

Task

Random 

Shuttle

Before Learning

1
 (

a
.u

.)

Emerge with Learning Task 1 & 2

Ehret et al. final revisions @ Nature Neurosc.
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Stimulus Representations in mPFC

Encode Task(sensory)-Specific Motor Plans 
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Ehret et al. final revisions @ Nature Neurosc.

Shuttle

During

Task

Random 

Shuttle

Before Learning

1
 (

a
.u

.)

Emerge with Learning Task 1 &  2

Motion 1

Motion 2Avoid 2
Tone

Task

Logic

Avoid 1

81

Stimulus Representations in mPFC

Encode Task(sensory)-Specific Motor Plans 
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Ehret et al. final revisions @ Nature Neurosc.

Shuttle

During

Task

Random 

Shuttle

Before Learning

1
 (

a
.u

.)

Emerge with Learning Task 1 &  2

Avoid 1

Motion 1

Motion 2Avoid 2
Tone

Task

Logic

Avoid 1

82

Stimulus Representations in mPFC

Encode Task(sensory)-Specific Motor Plans 
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Prof. Dr. Jean Piaget
Swiss psychologist and pioneer

Neuchatel, 1896-1980

The Concept of ‘Affordance’ in Psychology

Affordance alludes to the qualities of an object or situation that

define its possible use or make clear how it can or should be used.

Affordance adheres to the idea that perception and action are

inseparable (Principles of Genetic Epistemology, Piaget).

A candidate neural representation for ‘Affordance’.
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Conclusions Part II: The Nature of Semantic Representations

Brain Visual Pathway

Deep Neuronal Network

Bus

Medial Prefrontal 

Cortex (mPFC)

Ehret et al. final revisions @ Nature Neurosc.
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Conclusions Part II: The Nature of Semantic Representations

Brain Visual Pathway

Medial Prefrontal 

Cortex (mPFC)

mPFC sends these signals

backward for learning
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Conclusions Part II: The Nature of Semantic Representations

Brain Visual Pathway

Medial Prefrontal 

Cortex (mPFC)

mPFC sends these signals

backward for learning
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We are using motor signals to supervise the hierarchical learning of objects.

Keurti et al., 2023, ICLM
Hamza Keurti
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Robotic Action Transformer (RAT)Prompt:

- Wipe the table with thin cloth.

- Pick cube and place in bowl.

- Pick lying bottle from bowl.

- Pick coffee cup from pedestal

- Push bowl around the table.

- Pick standing bottle from pedestal.

- Pick cube and place in bowl, with distractors.

Developed @ 

Camera Image

Table Scence

Movie Credit Elvis Nava

Developing Bio-Inspired

AI Technologies that generate Behaviour 

Robert Katzschamnn

Elvis Nava

ChatGPT:   Prompt to Prompt

Dalle:         Prompt to Image

RAT:           Prompt to Action
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Nava et al., 2023, TMLR
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Industry Partner of 

Developing Bio-Inspired

AI Technologies that generate (virtual) Behaviour 
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Industry Partner of 

Developing Bio-Inspired

AI Technologies that generate (Virtual) Behaviour 

89

Virtual Action

Transformer (VAT)
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Summary: Advancing Neuroscience and AI

Artificial Intelligence

• Towards ultra-low power artificial systems 

employing Bio-inspired neurmorphic devices. 

• Towards new artificial systems that generate 

goal driven behaviour (like a human).

Natural Intelligence

• Learning Through Control - Biological Neurons likely 

learn by tracking their activity time course. 

• The brain transforms sensory representations into 

representations that allow the generation of actions.

NeuroscienceAI

Inspire

Technologies

Inspire

Hypotheses
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Part II: Understanding Hierarchical Neuronal Representations in Brain 

NeuroscienceAI

Acknowledgements

Part I: Learning in Hierarchical (Deep) Cortical Networks

NeuroscienceAI
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